正交李代数的极大Abel子代数文献综述

 2022-11-21 16:17:00
  1. 文献综述(或调研报告):

李代数(Lie algebra)是一类重要的非结合代数。最初是由19世纪挪威数学家索菲斯·李创立李群时引进的一个数学概念,经过一个世纪,特别是19世纪末和20世纪的前叶,由于威廉·基灵、嘉当、外尔等人卓有成效的工作,李代数本身的理论才得到完善,并且有了很大的发展。

一类重要的非结合代数。非结合代数是环论的一个分支,与结合代数有着密切联系。结合代数的定义中把乘法结合律删去,就是非结合代数。

李代数是挪威数学家索菲斯·李在19世纪后期研究连续变换群时引进的一个数学概念,它与李群的研究密切相关。在更早些时候,它曾以含蓄的形式出现在力学中,其先决条件是“无穷小变换”概念,这至少可追溯到微积分的发端时代。可用李代数语言表述的最早事实之一是关于哈密顿方程的积分问题。李是从探讨具有r个参数的有限单群的结构开始的,并发现李代数的四种主要类型。法国数学家嘉当在1894年的论文中给出变数和参变数在复数域中的全部单李代数的一个完全分类。他和德国数学家基灵都发现,全部单李代数分成4个类型和5个例外代数,嘉当还构造出这些例外代数。嘉当和德国数学家外尔还用表示论来研究李代数,后者得到一个关键性的结果。“李代数”这个术语是1934年由外尔引进的。随着时间的推移,李代数在数学以及古典力学和量子力学中的地位不断上升。到20世纪80年代,李代数不再仅仅被理解为群论问题线性化的工具,它还是有限群理论及线性代数中许多重要问题的来源。李代数的理论不断得到完善和发展,其理论与方法已渗透到数学和理论物理的许多领域。

课题一般理论如下:

(1)李代数定义:

设G是域F上的向量空间,其中定义了一个乘法运算(记为[x,y],并称之为方括号积或换位运算):对x,yG有[x,y]G,且一下三个条件成立:

(i) []=[,y] ,,,,y(称线性性);

(ii) [x,x]=0,(称为反对称性);

(iii)[x,[y,z]] [y,[z,x]] [z,[x,y]]=0,(称为Jacobi等式).

这时称G为域F上的一个李代数。G作为向量空间的维数dimG就是李代数的维数。当dimG时,G称为有限维李代数;当dimG=时,G称为无限维李代数.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

发小红书推广免费获取该资料资格。点击链接进入获取推广文案即可: Ai一键组稿 | 降AI率 | 降重复率 | 论文一键排版